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Abstract. Deep ideas of Sir James Lighthill concerning turbulent flows are discussed in the beginning. The scaling
laws for large-Reynolds-number flows are presented in their historical development. The underlying hypotheses
are discussed and compared with experiments. Special attention is given to non-universal Reynolds-number-
dependent scaling laws that reveal the incomplete similarity of the flows. Recent results concerning scaling laws
for boundary layers are presented in more detail and discussed.
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1. Introduction

Sir James Lighthill’s life in science created an unsurpassed standard for applied mathem-
aticians. He was a legend in his lifetime since his early twenties. His works and his legendary
image will continue to influence applied mathematics in the future and this influence will grow
with time. As Milton Van Dyke, an outstanding applied mathematician and fluid dynamicist by
his own, said: The generation of applied mathematicians who were lucky to live in Lighthill’s
time and to be directly influenced by Sir James will be known as the Lighthill generation.

There are now wide and sometimes fervant discussions concerning the subject of applied
mathematics, and the role and responsibilities of applied mathematicians. It seems to the
present author that the key to the correct answer to these questions lies in the famous saying
of J. W. Gibbs: ‘Mathematics is also a language’.

Indeed, all people use language. However, among the users of language, a particularly
important group can be distinguished: authors – poets, novelists, etc. They create fictitious
images, paradigms – idealized models of people and social phenomena. The greatest of these
paradigms, like Francesca da Rimini, Romeo and Juliet, Dr. Faust, Anna Karenina and the
circumstances that surround them, continue to live for centuries. They transform culture, and
in particular language.

A similar role is played by applied mathematicians. Using the language of mathematics and
transforming it when necessary, applied mathematicians create models of phenomena, both
in nature and engineering. These models give idealized but sufficiently complete images of
phenomena as a whole, which allow their mathematical analysis. The purpose of these models
is to predict the behavior of systems in unexplored ranges. When this goal is achieved, it leads
to practical applications. To be a dedicated applied mathematician is a great achievement,
honour and privilege, and Sir James proved it by his life in science.
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Sir James Lighthill worked in applied mathematics for more than 50 years. He created new
branches of fluid mechanics which will be leading in the coming XXI century. He elucidated
seemingly frozen classical fields in fluid mechanics from unexpected new viewpoints and
returned them to active life. He was equally strong in creating new models and in inventing
mathematical tools for exploring models of new challenging phenomena.

The present paper is concerned with hydrodynamic turbulence. The study of turbulence is
a singular branch of fluid mechanics, and the contribution of Sir James to this field is very
significant, however, rather astonishingly, not fully appreciated.

His widely known papers [1, 2] concerning aerodynamically generated sound and the role
of turbulence in sound generation are repeatedly reviewed, also by Sir James himself. How-
ever, his survey ‘Turbulence’ [3] (published by Manchester University Press in the volume
dedicated to Osborne Reynolds) remains not as well known as it should be, while it is truly
remarkable. It is now available in a four-volume edition of Sir James Lighthill’s Collected Pa-
pers, published by Oxford University Press and edited by Professor M. Y. Hussaini [4], and all
devoted fluid dynamicists are able now to enjoy reading it. (Thanks to Oxford University Press
and Professor Hussaini!) Sir James was able to present in this paper practically all essential
ideas of this subject and critically evaluate them. And it was done in only 64 pages – that is the
standard of how turbulence should be presented! As the great Russian poet, Alexandre Block,
said, ‘Rub out the accidental features, and you will see – the world is marvellous’ (English
translation by Sir James Lighthill). In writing this paper the present author was truly inspired
by this remarkable survey.

The paper [5], ‘Effect of compressibility on turbulence’ also remains practically unknown
to fluid dynamicists working in turbulence, and it is now perfectly clear why. It was published
as one of the chapters in the volumeGas Dynamics of Cosmic Clouds.But it did not contain
any applications to astrophysical problems, and therefore did not attract due attention of
astrophysicists. Also, fluid dynamicists not related to astrophysics did not have the idea of
looking in this volume, even though this paper contains a constructive model of turbulence
in compressible fluid at sufficiently large Mach numbers. It is demonstrated there that under
such conditions turbulence is created not only by vortices, but also by peculiar generalized
N-shaped shock waves. Everything is ready for an application of the invariance relations! Sir
James emphasized at the end of this short paper:

The author feels rather that the system (at Mach numbers comparable with one or greater
and in the three-dimensional case – GB) has become one in which the division of the
motion into ‘turbulence’ on the one hand and ‘sound’ (or shock waves) on the other is
almost without significance.

Great words of general significance! Exactly the same situation happens with turbulence
in stratified fluids; the role of Mach number is played here by the Richardson number. Both
phenomena should be considered as a unified new phenomenon rather than as a modification
of turbulence in an incompressible homogeneous fluid.

The last paper of Sir James closely related to turbulence was recently published in this
Journal [6]. It contains a crucial new ‘sandwich’ model of a hurricane. Sir James writes:

Between ocean and atmosphere there exists at high wind speeds a thick layer of ‘a third
fluid’: ocean spray consisting of a relatively tall cloud of droplets. Many of the smaller
ones. . . appear where air bubbles burst at the sea surface. A greater mass of droplets, on
the other hand, is formed. . . as ‘splash’ torn from, or as ‘spume’ ejected from whitecaps
(in the form of droplets with radii ranging from about 20µm to much larger values).
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That is to say, in this intermediate layer appears the basic reason for the phenomenon – the
damping of turbulence. Because the work spent by turbulence to keep the droplets suspended
is taken from the kinetic energy of the turbulence, the turbulent energy is reduced. The role
of large droplets, whose substantial number in the third fluid layer Sir James particularly
emphasized, is of great importance, because the large droplets prevent suspension of all the
droplets by wind. The large droplets leave the ‘third fluid’ in a rather thin layer. The turbulent
drag and heat exchange in the ‘third fluid layer’ are substantially reduced, and this layer works
as a lubricator and thermal insulator for the wind, increasing its velocity. The qualitative theory
suggested by Lighthill’s ‘sandwich’ model is now under development. When Lighthill’s model
is confirmed and brought to a more quantitative shapeit will open practical possibilities of
preventing or at least suppressing hurricanes.

It is appropriate here to give a definition of hydrodynamic turbulence.Turbulence is the
state of vortex fluid motion where the velocity, pressure, and other properties of the flow field
vary in time and space sharply and irregularly and, it can be assumed, randomly.Turbulent
fluid flows surround us, in the atmosphere, the oceans, in engineering and biological sys-
tems. First recognized and examined by Leonardo, for the past century turbulence has been
studied by engineers, mathematicians and physicists, including such giants as Kolmogorov,
Heisenberg, Taylor, Prandtl, and von Kármán. Every advance in a wide collection of subjects,
from chaos and fractals to field theory, and every increase in the speed and parallelization of
computers is heralded as ushering in the solution of the ‘turbulence problem’, yet turbulence
remains the greatest challenge of applied mathematics as well as of classical physics.

It is very discouraging that, in spite of hard work by an army of scientists and research
engineers during more than a century, almost nothing has become known about turbulence
from first principles: the continuity equation and the Navier-Stokes equations:

∂αuα = 0, (1)

∂tui + ∂αuiuα = −1

ρ
∂ip + ν1ui. (2)

(Here standard notations are used: theui (i = 1,2,3) are the velocity components in a
rectilinear orthonormal Cartesian coordinate systemx1, x2, x3, p is the pressure,t is the time,
∂i = ∂/∂xi, 1 is the Laplacian,ν is the kinematic viscosity, andρ is the density; repeated
Greek indices imply summation.)

Turbulence at very large Reynolds numbers (often called developed turbulence) is widely
considered to be one of the happier provinces of the turbulence realm, as it is widely thought
that two of its basic results are well-established, and have a chance to enter, basically un-
touched, into a future complete theory of turbulence. These results are the von Kármán–
Prandtl universal logarithmic law in the wall-region of wall-bounded turbulent shear flow, and
the Kolmogorov–Obukhov scaling laws for the local structure of developed turbulent flow.
The beginning of fundamental research of turbulent flows at very large Reynolds numbers can
be dated sharply: it was the lecture of Th. von Kármán at the Third International Congress
for Applied Mechanics at Stockholm, 25 August 1930 [7]. Von Kármán, one of the greatest
applied mechanicians of the XX century was the principal founder of the International Con-
gresses for Applied Mechanics.1 Unquestionably his lecture ‘Mechanische Ähnlichkeit und
Turbulenz’2 was the central event of the Congress.

1 These Congresses continue regularly, once every four years, up to the present time under the name
International Congresses for Theoretical and Applied Mechanics.

2 Mechanical Similitude and Turbulence.
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Von Kármán began his lecture with the following statement:

Unsere experimentellen Kenntnisse über die innere Struktur der turbulenten Strömung
genügen noch nicht, um sichere Grundlagen für eine rationelle theoretische Berechnung
der Geschwindigkeitsverteilung und der Reibung im sogenannten hydraulischen Strömung-
szustande zu liefern. Die zahlreichen halbempirischen Ansätze, z. B. der Versuch einen
turbulenten Reibungskoeffizienten einzuführen, können weder den Theoretiker noch den
Praktiker befriedigen. Auch die nachfolgenden Untersuchungen erheben nicht den Ans-
pruch, eine wirkliche endgültige Theorie der Turbulenz zu liefern. Ich will mich vielmehr
darauf beschränken, klarzustellen, was man auf Grund der reinen Hydrodynamik aus-
zusagen vermag, wenn man über bestimmte grundlegende Fragen bestimmte Hypothesen
einführt.3

The hypothesis proposed by von Kármán for answering the fundamental questions con-
cerning the velocity distributions and drag coefficient in turbulent hydraulic, or shear, flows
as they are called now, first of all flows in pipes and channels, was presented by him in the
following straightforward form:

Wir gründen auf diese experimentell festgestellten Tatsachen die Annahme, dass, abgese-
hen von der Wandnähe, die Geschwindigkeitsverteilung der mittleren Strömung von der
Zähigkeit unabhängig ist.4

As a result of subsequent arguments proposed by von Kármán there appeared what is
called now the universal (Reynolds-number-independent) logarithmic law and corresponding
drag law for the turbulent flow in a cylindrical pipe.

The leaders of applied mechanics of that time were present at von Kármán’s lecture and
took part in the subsequent discussion. The first speaker was L. Prandtl. He said:

Herr Prandtl: Die neuen Kármán’schen Rechnungen bedeuten einen höchst erfreulichen
Fortschritt in der Frage der Flüssigkeitsreibung. Bisher war es immer so, dass beim Forts-
chreiten in den höheren Reynolds’schen Zahlen die frühere Interpolationsformel sich bei
der Extrapolation auf das neu erforschte Gebiet als unrichtig erwies und durch eine neue
ersetzt werden musste. Die Forschungslaboratorien machten grosse Anstrengungen, im-
mer höhere Reynolds’schen Zahlen zu erreichen, doch setzten die Kosten der grossen
Versuchseinrichtungen eine Grenze, die kaum mehr überschritten werden konnte.

Durch die Kármán’schen Formeln sind nun weitere Anstrengungen in dieser Richtung un-
nötig geworden. Die Formeln sind sowohl mit den Rohrversuchen von Nikuradse und von
Schiller und Hermann und mit den Plattenreibungsversuchen von Kempf in so gutem Eink-
lang, dass man ihnen alles Vertrauen für Anwendung auf beliebig hohe Reynolds’schen
Zahlen schenken darf. Nach kleineren Reynolds’schen Zahlen hin ist die Übereinstim-
mung schlechter, was auf eine Zähigkeitswirkung auch im Innern der Flüssigkeit zurück-

3 Our experimental knowledge of the internal structure of turbulent flows is insufficient for delivering a reliable
foundation for a rational theoretical calculation of the velocity distribution and drag in the so-called hydraulic flow
state. Numerous semi-empirical formulae, for instance, the attempt to introduce turbulent drag coefficients, are
unable to satisfy neither the theoretician nor the practitioner. The investigations which will be presented below
also do not claim to achieve a genuine ultimate theory of turbulence. I will restrict myself rather to clarifying what
can be achieved on the basis of pure fluid dynamics if definite hypotheses are introduced concerning definite basic
questions.

4 On the basis of these experimentally well established facts we make an assumption that outside a close
vicinity of the wall the velocity distribution of the mean flow is viscosity-independent.
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zuführen ist, d. h. der von der Zähigkeit beeinflusste Streifen, der keineswegs bloss aus
der Laminarschicht an der Wand besteht, reicht hier weit ins Innere herein.

Bezüglich der beiden Darstellungen der Geschwindigkeitsverteilung bei Nikuradse im An-
schluss an die neuen Kármán’schen Formeln und an meine frühere Formulierung mit dem
dimensionslos gemachten Wandabstand möchte ich noch auf einen scheinbaren Wider-
spruch hinweisen. Die Kármánschen Formeln berücksichtigen die Zähigkeit nur als eine
Randbedingung. Die Geschwindigkeitsverteilung wird dort ohne Zähigkeit berechnet. Der
dimensionslose Wandabstandy∗ = (y/ν)√τ0/ρ enthält aber die Zähigkeit. Meiner Ansicht
nach ist die Aufklärung die, dass für die ganz grossen Reynoldsschen Zahlen die Kármán-
schen Darstellung als das Exakte aufzufassen ist, während die Darstellung mit dem di-
mensionslos gemachten Wandabstand wesentlich den Wandstreifen genau wiedergibt, in
dem die Zähigkeit mit der Turbulenz zusammen wirkt.5

It should be understood that at that time L. Prandtl was generally considered as ‘the chief
of applied mechanicians’ (cf. Batchelor [8], p. 185). The opinion which we just reproduced ex-
plains at least partially why during nearly seventy years the Nikuradze [9] experiments6 were
never extended to larger Reynolds numbers. And, moreover, the culture of such experiments,
in fact very subtle, decayed and to a certain extent was lost.

It is also true that the last part of L. Prandtl’s comment is very deep and instructive. But
it remained dormant and was not cast into a proper mathematical theory for the following
technical reason. In the early thirties, and even long before, the mathematical techniques
which were needed here were in sufficiently good shape. However, they were considered
as something like a mathematical monstrosity with no practical applications. Only several
decades later it was recognized (see [10–13]) that many physical phenomena needed these
techniques for modeling, and they entered the practice of applied mathematics and theoretical
physics as incomplete similarity, fractals, renormalization groups. These concepts will be used
in the present paper to explain the situation with the scaling laws for turbulent shear flows at
very large Reynolds number. In particular, incomplete similarity will allow the resolution of
the contradiction mentioned in the last part of Prandtl’s comment.

5 The new Ḱarmán calculations signify a very enjoyable progress in the problem of fluid friction. It was always
the case, that by advancing to higher Reynolds numbers the previous interpolation formulas were revealed to be
incorrect by extrapolation to a newly investigated range, and had to be replaced by new ones. Research laborat-
ories made big efforts to achieve higher Reynolds numbers, but the cost of big experimental set-ups has some
bound which cannot be substantially exceeded.Due to Kármán’s formulas further efforts in this direction became
unnecessary.[italics mine – GB] The formulas are in such good agreement with the experiments in pipe flows
by Nikuradze, and of Schiller and Hermann, and with the experiments concerning the drag of plates performed by
Kempf, that complete confidence can be placed in them for their application at arbitrarily large Reynolds numbers.
For lower Reynolds numbers the agreement is worse, and this can be attributed to the action of the viscosity also
in the inner part of the flow,i.e. to the viscosity-influenced streaks of which the laminar layer at the wall consists,
and which in this case enter far into the internal part of the flow.

I want to point out a seeming contradiction concerning both representations of the velocity distribution by
Nikuradze in connection with Ḱarmán’s new formulas and my earlier formulation using the dimensionless distance
from the wall. Ḱarmán’s formulas use viscosity in the boundary condition only. The velocity distribution should be
calculated without viscosity. However, the dimensionless distance from the wall,y∗ = (y/ν)√τ0/ρ, does contain
the viscosity. According to my opinion, the explanation is that the Kármán representation should be considered
as exact for very large Reynolds numbers, while the representation via the dimensionless distance from the wall
applies essentially to the wall layer and streaks where the viscosity and turbulence are acting together.

6 According to the author’s opinion, Nikuradze’s experiments, as far as the flows in smooth pipes are concerned,
are adequate in their range of Reynolds number except at the lowest ones.
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After von Kármán’s [7] work, L. Prandtl [14] also came to the universal logarithmic law
using a different approach, and the name ‘von Kármán–Prandtl universal logarithmic law’ be-
came established. Many different derivations of the universal logarithmic law were proposed
later (see Sir James Lighthill’s survey [3], pp. 116–117; Landau and Lifshitz [15], pp. 172–
175; Schlichting [16] pp. 489–490; Monin and Yaglom [17], pp. 273–274, and quite recently,
Spurk [18], p. 231). We emphasize, however, that the basis of all these derivations remained
the hypothesis explicitly formulated by von Kármán [7] which was cited earlier.

The second major breakthrough in the theory of turbulence at very large Reynolds numbers
happened in 1941 in the fundamental works of A. N. Kolmogorov and A. M. Obukhov, at that
time Kolmogorov’s student [19–22], where the laws of the local structure of such flows were
obtained. We emphasize particularly the role of the elucidating paper by G. K. Batchelor [23]
in which the Kolmogorov–Obukhov theory, presented originally in the form of short notes,
was explained in detail and fundamentally clarified. The problems of the local structure of
developed turbulence are, however, outside the scope of the present paper.

One important note in conclusion. Early in 1996 the present author came to Berkeley
for a short visit and had the privilege of meeting Professor A. J. Chorin. During our first
conversation we discovered that we had been working on similar problems with different
but complementary tools, which, when wielded in unison, led to unexpected results. We
have been working together ever since, and it is my great pleasure to present in this paper
dedicated to Sir James Lighthill some of the results of our joint work. The contributions of
Dr. V. M. Prostokishin and Professors N. D. Goldenfeld and O. Hald are appreciated by both
of us.

2. Scaling and incomplete similarity

The short explanation of these concepts will be presented here for the reader’s convenience
and exactly in the form in which it will be used in the present paper. More detailed and general
explanations can be found in the books [11–13].

Consider a physically meaningful relation

y = f (x1, x2, x3, c), (3)

where the argumentsx1, x2, x3 have independent dimensions, like, for example, density, en-
ergy and time, and the dimensions ofy and c are dependent ones,i.e., they can be ex-
pressed as

[y] = [x1]p[x2]q[x3]r
(4)

[c] = [x1]k[x2]`[x3]m.
We consider here mechanical phenomena only, so the number of arguments having independ-
ent dimensions is no more than three. The symbol[x] denotes the dimension of the quantityx,
and we restrict ourselves here to the case of a single argumentc having dependent dimensions,
needed in the present paper.

The relation (3) is physically meaningful; therefore dimensional analysis allows one to
represent the relation (3) in the form

5 = 8(51), (5)
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where

5 = y

x
p

1 x
q

2x
r
3

51 = c

xk1x
`
2x

m
3

, (6)

are dimensionless quantities, and8 is an unspecified function. This means that the function
f has the important property of generalized homogeneity

f (x1, x2, x3, c) = xp1 xq2xr38
(

c

xk1x
`
2x

m
3

)
.

Consider now the case when the quantity51 is very small,51 � 1, or very large51 � 1.
In such cases, in the practice of mathematical modeling, it is customary to assume that the
function8 (51) can be replaced by a constant,i.e., by its limit C at51 → 0 or51 → ∞.
Indeed, if the function8 has a finite nonzero limitC and51 is small (or large) enough, this
is true, and it is possible to replace Equation (3) by a much simpler relation

y = Cxp1 xq2xr3 . (7)

Thus, in such cases, (i) the parameterc disappears completely, and (ii) the powersp, q and
r can be found by a simple algebraic procedure. A classical example of such a situation is
the very intense explosion, investigated by G. I. Taylor and J. von Neumann (see,e.g. [13],
pp. 47–49). When such a situation holds one says that there is acomplete similarityin the
parameter51.

It is obvious that, in general, complete similarity does not hold:there is, in general, no
reason to believe that for all physical phenomena the function8 has a finite nonzero limit
when51 goes to zero.7 Therefore, the parameter51 generally speaking remains essential,
even when it is small, and thus the argumentc in the relation (3) remains essential. This
general statement is rather trivial, and nothing particularly significant can follow from it.

There exists, however, an important intermediate special case which reveals a wide class
of scaling relations in many important phenomena. This is the case when the function8 has
no finite nonzero limit when51 goes to zero or infinity, but at small (large)51 can be repre-
sented as

8(51) = C5α
1 + · · · , (8)

whereC and α are constants, and the dots represent terms smaller than the first one. In
addition, we have to remember that we are interested not in the limit, but in the asymptotics,
more precisely, intermediate asymptotics for51 small or large. Neglecting smaller terms, as
is possible for sufficiently small (large)51 and substituting (8) in (5), we obtain for small
(large)51:

5 = C5α
1 (9)

or, returning to dimensional variables,

y = Cxp−αk1 x
q−α`
2 xr−αm3 cα . (10)

7 Another example of such widely believed legends is the naive expectation that the constantC should be of
the order of one. A brilliant discussion of a case where this is not so and why can be found in the paper by Sir
James Lighthill [5], where the effects of compressibility on turbulence are considered.
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This power (‘scaling’) relation is of the same form as (7), however, with two essential dis-
tinctions. First, while the powers of the variablesx1, x2, x3 were easily obtained in the case
of complete similarity (7) by dimensional analysis, in the relation (10) they cannot be so
obtained because the parameterα which enters the relation (10) is a particular property of
the problem under consideration and its value cannot be obtained from the general covariance
principle which is the basis of dimensional analysis. Therefore its determination requires an
effort beyond dimensional analysis. Furthermore, contrary to (7), the argumentc does not
disappear from the resulting scaling relation, but enters this relation in a power combination
with other governing parameters. We refer to such cases as cases ofincomplete similarity in
the parameter51.

Scaling relations with powers that cannot be obtained from dimensional considerations
have a long history in engineering. A widely shared opinion held, and very often holding now,
is that these relations are nothing more than empirical correlations. In fact, these relations are
especially important because they also reveal the self-similarity of the phenomena, but a more
complicated case of it. We shall see below that this is exactly what happens in turbulence at
very high Reynolds number. Here viscosity has a persistent effect, despite very large values of
the corresponding dimensionless parameter, the Reynolds number. It does not disappear, but it
enters the resulting relations only in combination with other parameters of the turbulent flow.

3. Mathematical example

Chorin proposed a remarkable mathematical example which elucidates the nontrivial
mathematical situation in the problem of turbulent shear flows at large Reynolds numbers.
Chorin’s example can be compared by its value with the example of Friedrichs which elucid-
ated boundary layer theory ([24], pp. 155–156, [25], pp. 69–70).

Consider a family of curves

φ =
(

log
d

δ

)(y
δ

)1/ log(d/δ) − 2 log
d

δ
, (11)

whereφ is a dimensionless function,d andδ are parameters with the dimension of length,y

is the independent variable, also having the dimension of length,y > δ. We assumed is fixed
andδ is the parameter of the family.

It is easy to show that the functionφ satisfies the ordinary differential equation

d2φ

dy2
=
(

1

log
(
d
δ
)
− 1

)
1

y

dφ

dy
(12)

and the boundary conditions

φ(δ) = − log
d

δ
,

dφ

dy
|
y=δ =

1

δ
. (13)

Assume now thatd is much larger thanδ, d � δ, so that 1/ log(d/δ) is a small parameter.
For the curves of the family (11) a simple relation is easily obtained

y∂yφ =
(y
δ

)1/ log(d/δ) = exp

[
log y

d
+ log

(
d
δ

)
log d

δ

]
. (14)
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This relation shows that atd/δ → ∞ and any fixedy/d the quantityy∂yφ = ∂logyφ tends
to e.

As a function ofδ the family (11) has an envelope

φ = log
y

d
. (15)

The quantity∂logyφ for the envelope is also a constant, but a different one, equal to 1. (We
emphasize that here we consider only the branch of the family (11) havingd > δ. There is
another branch withd < δ which also has an envelopeφ = 2 log(y/d)(2 − z)−1, where
z = 15936. . . is the second, nonzero root of the equation(2− z)expz = 2.)

Assume now, that in Equation (12),i.e., for y > δ but not in the boundary condition aty =
δ we neglect (remember von Kármán’s basic hypothesis!) the small parameter 1/ log(d/δ) in
comparison with 1, so that Equation (12) is reduced to the form

d2φ

dy2
= −1

y

dφ

dy
. (16)

Satisfying the (δ-dependent!) boundary conditions (13), we obtain not the family (11), but only
a single curve, the envelope (15) which isδ-independent (‘universal’!). In fact, by neglecting
the small parameter 1/ log(d/δ) in Equation (12) we prevented (compare with Prandtl’s com-
ment in the Introduction) the penetration of the influence of the parameterδ into the basic
region.

Let us look at this matter from a different viewpoint. The derivative dφ/dy can be repres-
ented without solving Equation (12) and by dimensional analysis only in the form

dφ

dy
= 1

y
8

(
y

δ
,
d

δ

)
, (17)

where8 is a function of its dimensionless arguments. In the case under consideration, we
have

8 =
(y
δ

)1/ log(d/δ)
. (18)

We see that, at arbitrarily largey/δ, the function8 cannot be replaced by a constant, so that the
influence ofδ is preserved and cannot be neglected. However,δ enters the resulting equations
in a specific, power-type form, due to specific type of invariance of the problem on the whole.
In fact, we met in this example the incomplete similarity in the parameter(y/δ), explained in
the previous section. We will see that the same situation happens in wall-bounded turbulent
shear flows. However, if we do make the assumption of complete similarity,8 = constant
as above, then we recover the envelope of the family of solutions rather than the solutions
themselves.

4. Steady shear flows at very large Reynolds numbers. The intermediate region in a
pipe flow

We return to the problem of statistically steady turbulent shear flows8 (‘hydraulic flows’ in
von Kármán terminology). Among such flows are many flows of practical importance, such

8 Shear flows are flows with parallel mean velocities varying only in the lateral direction.
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as flows in pipes, channels and boundary layers. Their educational value is in fact related to
their locality. In general, turbulent flows are nonlocal both in time and space, so that their
mean properties are determined not only by the flow state at a given point, but also by the flow
history and the flow properties at neighboring points. This is not so for steady turbulent shear
flows, and the locality simplifies their study essentially. Flows in cylindrical pipes constitute
an instructive example of wall-bounded turbulent shear flows.

We have the same clear goal and well-determined problems as once formulated by von
Kármán: To obtain the mathematical expressions for the drag coefficient and the velocity
distribution in the intermediate region of the flow. ‘Intermediate’ means outside the viscous
sublayer adjacent to the wall where the velocity gradients are so high that the viscous stress
is comparable with the stress created by turbulent vortices, and not too close to the pipe axis.
Von Kármán also considered the same intermediate region of flow.

However, our basic hypothesis will be essentially different from von Kármán’s hypothesis,
presented in the Introduction, and this difference will lead to substantially different results.
In fact, we replace von Kármán’s hypothesis of complete similarity by that of incomplete
similarity.

We turn to the derivation of the velocity distribution in the intermediate region. Assume that
the mean velocity gradient∂yu depends on the following arguments: the transverse coordinate
y (the distance from the wall), the shear stress at the wallτ , the pipe diameterd, and the fluid
properties: its kinematic viscosityν and densityρ. The velocity gradient∂yu is considered
rather than the velocityu itself, because the values ofu at an arbitrary distance from the wall
depend on the flow in the vicinity of the wall where the asymptotic assumptions which we
shall use are clearly invalid. Thus,

∂yu = f (y, τ, d, ν, ρ). (19)

Following von Kármán and Prandtl we introduce the viscous length scale

δ = ν

u∗
, where u∗ =

√
τ

ρ
, (20)

and a rigorous application of dimensional analysis gives

∂yu = u∗
y
8

(
y

δ
,
d

δ

)
. (21)

Also, dimensional analysis shows thatd/δ = u∗d/ν is a function of the traditional Reynolds
number

Re= ūd

ν
, (22)

where ū is the average velocity which is the flux divided by the cross-section area. Von
Kármán used the Reynolds number based on the maximum velocity. In principle, it makes
no difference. The relation (21) can be rewritten therefore as

∂yu = u∗
y
8
(y
δ
,Re

)
. (23)

For very large Reynolds numbers, in the intermediate region under consideration, the ratio
of the distance from the wall to the viscous length scaley/δ is large. The basic von Kármán
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hypothesis (see the Introduction) is that the viscosity does not affect the velocity distribution.
However, viscosity enters both argumentsy/δ and Re. Therefore this hypothesis means, in
the terms of Section 2, complete similarity in the parametersy/δ and Re. According to von
Kármán’s hypothesis the viscous length scaleδ should disappear from the resulting relations,
and the function8 can be replaced by a constant:8 = 1/κ. The constantκ was later named
‘Kármán’s constant’. Substitution of8 = 1/κ in (23) gives

∂yu = u∗
κy
. (24)

Integration gives the von Kármán–Prandtl universal (Reynolds-number independent) log-
arithmic law for the velocity distribution

u = u∗ =
[

1

κ
log

u∗y
ν
+ C

]
, (25)

where the constantC (and this is also a seemingly logically consistent, but nevertheless addi-
tional substantial assumption) is finite and Re-independent. L. Prandtl (see his comment in the
Introduction) emphasized a ‘seeming contradiction’ related to the appearance of the viscosity
in the resulting formula, which will be explained later.

For more than six decades the experimental information accumulated, suggesting some
doubts in the universal logarithmic law,i.e., in the von Kármán basic hypothesis which we now
call the hypothesis of complete similarity. The experimental data demonstrated a systematic
deviation (not a scatter!) from the predictions of the universal logarithmic law even if a very
liberal approach to the constantsκ andC is allowed (κ from 0·38 to 0·44; C from 4·1 to
6·3!), although, by the very logic of the derivation, these constants should be identical for all
high-quality experiments in smooth pipes. Therefore, it was a natural step for us to assume
that there is no complete similarity, and to propose, instead of the von Kármán hypothesis, a
different hypothesis, suggesting the next by complexity step:

First Hypothesis: There is an incomplete similarity of the average velocity gradient in
the parametery/δ, and no kind of similarity inRe.

According to this hypothesis, the influence of the viscosity remains at arbitrary large Reyn-
olds numbers in the whole body of the flow, but the viscosity enters only in combination with
other parameters controlling the turbulence. Practically, this means that for very large Re the
function8 in (23) at largey/δ should be assumed to be a power function of its argumenty/δ,
while no special suggestion of any kind of similarity in Re is assumed, so that

8
(y
δ
,Re

)
= A(Re)

(y
δ

)α(Re)
, (26)

whereA(Re) andα(Re) are certain, yet undetermined functions of the Reynolds number. It is
instructive at this point to remember Chorin’s example presented in Section 3.

Substituting (26) in (23) we obtain

∂yu = u∗
y
A(Re)

(y
δ

)α(Re)
, δ = ν

u∗
. (27)

Note that the relation (24) is a special case of (27). Therefore, if the experiments and/or
numerical computations (for the relevant range of high Reynolds numbers the numerical
computations are nowadays impossible, so here we speak about the rather far future) would



372 G. I. Barenblatt

Figure 1. The Princeton data [27] obtained in a high-
pressure pipe confirm the splitting of the experimental
data according to their Reynolds numbers and the rise
of the curves above their envelope in the(logη, φ)-
plane. The solid line is the envelope; the curves turn
at the center of the pipe. The splitting and form of
the curves agree with the scaling law, and are in-
compatible with the von Ḱarmán–Prandtl universal
logarithmic law. Our interpretation of these exper-
imental results is substantially different from that
of the authors of [26]. Moreover, as we showed in
[31], the results of [26, 27] at Re> 106 are influ-
enced by the roughness of the pipe wall. However,
the splitting of experimental data is a very robust
phenomenon clearly revealed in spite of experimental
error. (Reproduced with permission from [26]).

Figure 2. The experimental data of Nikuradze [9] in
the coordinates(logη, ψ) at η > 30 lie close to the
bisectrix of the first quadrant, confirming the scaling
law. (1)1, Re= 4× 103; (2) N, Re= 6·1× 103;
(3) ◦, Re = 9·1 × 103; (4) •, Re = 1·67× 104;
(5) �, Re= 2·33× 104; (6) �, Re= 4·34× 104;
(7) 5, Re= 1·05× 105; (8) H, Re= 2·05× 105;
(9) ∪, Re= 3·96× 105; (10)∪� , Re= 7·25× 105;
(11)♦, Re= 1·11×106; (12)�, Re= 1·536×106;
(13)+, Re= 1·959×106; (14)×, Re= 2·35×106;
(15)∩, Re= 2·79× 106; (16)∩� , Re= 3·24× 106.

The application of the same processing to the Prin-
ceton data [26, 27] as well as the analysis of the drag
curves revealed [31] the influence of wall roughness
at Re> 106.

show thatA is a universal constant whileα = 0, we could return to (24).Now we can claim
definitely that this is not the case!

Note immediately a clear-cut qualitative difference between the cases of complete and
incomplete similarity. In the first case the experimental data should cluster in the traditional
(logη, φ) plane(φ = u/u∗, η = u∗y/ν = y/δ) on the single straight line of the universal
logarithmic law. In the second case the experimental points should occupy an area in the
(logη, φ) plane; to each value of the Reynolds number there corresponds a separate curve.

Our next hypothesis will be thevanishing-viscosity principle:

Second Hypothesis:A gradient of average velocity tends to a well-defined limit as the
viscosity vanishes.

This principle is in clear correspondence with the last part of Prandtl’s conclusion, and was
also implicitly used by von Kármán (see the Introduction).

The experiments, even at high Reynolds numbers, demonstrate a perceptible dependence
of the velocity distribution on Re (see Figure 1). Therefore, and according to the vanishing vis-
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cosity principle, it is appropriate to expandA(Re) andα(Re) into a series in a small parameter
ε(Re), vanishing at Re= ∞, and to retain the first two terms

A = A0+ A1ε, α = α0+ α1ε

whereA0, A1, α0 andα1 should be, by the logic of the derivation, universal Reynolds-number-
independent constants. We obtain from (27),

∂yu = u∗
y
(A0+ A1ε)

(y
δ

)α0+α1ε

. (28)

When the viscosity (and, consequently, the length scaleδ) tends to zero, a well-defined limit
of (28) does exist forα0 = 0 only; therefore, according to our second hypothesisα0 = 0.
There is also a possibility to assume thatA0 = 0, α0 6= 0, andε = (Re)−α0. This leads to
a universal power dependence of∂yu upony. This possibilitiy, however, is not found to be
compatible with the experimental data.

Furthermore, (28) can be represented as

∂yu = u∗
y
(A0+ A1ε)exp

[
α1ε log

y

δ

]
= u∗

y
(A0+ A1ε)exp

[
α1ε log

u∗d
ν
+ α1ε log

y

d

]
. (29)

The small parameterε is a function of the Reynolds number, vanishing at Re= ∞. Relation
(29) shows that, ifε tends to zero at Re→ ∞ faster than 1/log Re, the argument of the
exponent tends to zero, and we return to the case of complete similarity. The experiments, as
was mentioned before, show that this is not the case. Ifε tends to zero slower than 1/log Re,
the well-defined limit of the velocity gradient for the viscosity going to zero does not exist,
and we obtain a contradiction to the second hypothesis, the vanishing-viscosity principle.
Therefore, the only choice compatible with our basic hypotheses (incomplete similarity and
vanishing viscosity principle)is

ε = 1

log Re
. (30)

Thus we obtain, by integration of (29)

φ = u

u∗
= (C0 log Re+ C1)

(y
δ

)α1/logRe
. (31)

Here an additional condition

φ(0) = 0

was used. This condition is an independent assumption confirmed by experiments which does
not follow from the no-slip boundary conditionu(0) = 0, because the boundaryy = 0 is
outside the range of applicability of the intermediate asymptotic relation (29).

Thus, we come to a conclusion which is in correspondence with the intuitive idea of Prandtl
(see the last sentence of his comment). Indeed, thewall streaks where turbulence and viscosity
act together penetrate the main body of the flow at any Reynolds number.It is also clear that
these streaks create theintermittencyof the wall-bounded flows. This conclusion is also in
correspondence with the idea of incomplete similarity.
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The parameter of turbulence(u∗) and viscosity(ν) form together a monomial

C = (C0 log Re+ C1)u
1+(α1/logRe)
∗ ν−(α1/log Re), (32)

whose dimension cannot be obtained from dimensional analysis, and it determines the velocity
distribution

u = Cy(α1/log Re).

A careful comparison with the data of Nikuradze’s experiments, which were performed under
the direct guidance of L. Prandtl, suggested (see the details in [28–31]) the following values
of the universal constants:

C0 = 1√
3
, C1 = 5

2, α1 = 3
2. (33)

Therefore theultimate scaling law proposed for the velocity distribution in the major, inter-
mediate region of the pipe is

φ =
(√

3+ 5α

2α

)
ηα, α = 3

2 log Re
, φ = u

u∗
, η = u∗y

ν
. (34)

The scaling law (34) shows, as expected, that there is no universal Re-independent velocity
distribution in the logη, φ plane, but there is a family of curves in this plane with Re as a
parameter. However the family (34) has a special property of self-similarity and therefore of
universality. Indeed, if we plot on the ordinate axis instead ofφ the quantity

ψ = 1

α
log

2αφ√
3+ 5α

, α = 3

2 log Re
, (35)

we obtainψ = logη, i.e. the bisectrix of the first quadrant. Comparison with Nikuradze’s
experimental data shows that this is indeed the case (Figure 2). The overwhelming majority
of the experimental points forη > 30 does indeed settle down to the bisectrix. The points
corresponding toη < 30 naturally deviate from the bisectrix, but it should be emphasized
that this deviation is a systematic one, not a scatter. We will discuss this topic in more detail
elsewhere.

The scaling law (34) allows determination of the dependence of the drag coefficient on the
Reynolds number. We define the dimensionless skin friction (drag) coefficient in a way now
common in the literature (see,e.g. [17, p. 301])

λ = τ

ρū2/8
= 8

(
u2∗
ū2

)
. (36)

Note that von Kármán’s definition of the skin-friction coefficient is different:

λK = 2τ

ρu2
max

,

whereumax is the maximum velocity, so that according to (34),

λK = λ 1

(1+ α)2(2+ α)2 . (37)
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The numerical factorK = λK/λ is a function of the Reynolds number; at large Reynolds
numbersK is close to1

4.
Using for the determination of the average velocityū the scaling law (34), and neglecting

the deviation of the velocity distribution from the scaling law in the viscous sublayer, and near
the axis, we obtain the formula for theskin friction coefficient as a function of the Reynolds
number

λ = 8

92/(1+α) , 9 = e3/2(
√

3+ 5α)

2αα(1+ α)(2+ α), α = 3

2 log Re
. (38)

Comparison of this law with the independent series of Nikuradze’s experiments [9] determ-
ining the skin friction also showed an instructive agreement (see the details in [28–31]). The
deviations are within the limits of a normal experimental scatter.

We come to the conclusion that the scaling law with the universal constants (33) and the
drag law (38) describes the flow in smooth pipes satisfactorily for large Reynolds numbers,
and that the incomplete similarity of this flow can be considered as established.

5. Modification of the Izakson–Millikan–von Mises derivation of the velocity
distribution in the intermediate region. The vanishing-viscosity asymptotics

The universal logarithmic law hardened into dogma and became one of the pillars of turbu-
lence theory and a mainstay of engineering science to a large extent because it was supported
by an independent mathematical derivation based on seemingly unassailable principles. This
derivation was proposed by Izakson [32], Millikan [33], and von Mises [34] (see also [17],
pp. 299–301). It is usually presented as follows. It is assumed that in the intermediate region
under consideration the dimensionless velocity distribution is a universal, Reynolds-number-
independent function of the local Reynolds numberη = u∗y/ν. Thus, the influence of the ex-
ternal dimensional parameter, the pipe diameterd (and consequently of the Reynolds number)
is neglected, so that thewall law is valid

φ = u

u∗
= f

(u∗y
ν

)
, (39)

wheref is a certain dimensionless function.
On the other hand, in the vicinity of the pipe axis thedefect lawis assumed to be valid

uCL − u = u∗g(2y/d), (40)

whereuCL is the mean velocity at the pipe axis, so thatuCL−u is the velocity defect, andg is
another dimensionless function, but of a different argument: in relation (40) the influence of
viscosity is neglected. Thus, it is assumed that in the wall region the influence of the external
length scaled can be neglected, whereas near the pipe axis the influence of the internal length
scaleδ = ν/u∗ can be neglected. The next step is the assumption that there exists at very large
Reynolds numbers an interval of distances where both laws (39) and (40) are valid. Therefore
a functional equation

uCL − u∗f (u∗y/ν) = u∗g(2y/d) (41)

is obtained by combining (39) and (40). After differentiation of (41) byy followed by multi-
plication byy, the following relation is obtained

ηf ′(η) = −ξg′(ξ). (42)
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Hereξ = 2y/d. The right- and left-hand sides of Equation (42) contain functions of different
arguments; therefore each of the sides can be only a constant. Denoting this constant by 1/κ

and integrating, one obtains the law of the wall in the form of universal logarithmic law

f (η) = 1

κ
logη + B, (43)

as well as the defect law

g(ξ) = −1

κ
logξ + B0, (44)

where

B0 = uCL

u∗
− 1

κ
log

u∗d
2ν
− B. (45)

This derivation was appreciated by A. N. Kolmogorov, and entered the survey of Sir James
Lighthill [3, the relations (15)–(17) on p. 116]. It was apparently one of the first applications
of the method of matched asymptotic expansions which is very popular nowadays (see the
remarkable monographs [35, 36]).

This very attractive derivation is, however, not quite correct and needs a modification. It
is clear now (cf. Figure 1) that both in the wall law and in the defect law the influence of
Reynolds number cannot be neglected. So, according to our basic concept, these laws should
be represented in the form

φ = u

u∗
= f

(u∗y
ν
,Re

)
, (46)

and

uCL − u = u∗g
(

2y

d
,Re

)
. (47)

The further derivation proceeds as before, the only difference being thatκ is no longer a
constant, but a certain function of the Reynolds number:κ = κ(Re), andB is also a function
of the Reynolds number.

Therefore, the law of the wall takes the form

φ = u

u∗
= 1

κ(Re)
log

u∗y
ν
+ B(Re), (48)

whereκ(Re) andB(Re) are certain unspecified functions.
It is essential that there is no contradiction between the scaling law (34) and law of the

wall (48). It was demonstrated in [37, 38], where the vanishing-viscosity method developed
by Chorin (see [39, 40]) was essentially used. The law (34) can be written in the form

φ =
(

1√
3

log Re+ 5

2

)
exp

(
3 logη

2 log Re

)
. (49)

Let the observation point be at a fixed distancey from the wall, definitely larger than a certain
length1, for instance, the size of a gauge. Let also the pipe diameter and pressure gradient
be fixed. One is not free to vary Re= ūd/ν and η = u∗y/ν independently, because the
viscosityν appears in both. So, ifν is decreased by the experimenter as it was in the Princeton
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Superpipe experiments [26, 27], whose basic idea was proposed by Brown [41], one considers
flows at ever largerη at ever larger Re, in particular the lowestη = u∗1/ν is increasing with
decreasing viscosity. Consider now the ratio 3 logη/2 log Re which enters the scaling law in
the form of (49). It can be represented in the form

3 logη

2 log Re
= 3

2

[
log

ūd

ν
+ log

y

d
+ log

u∗
ū

]
1

log ūd
ν

. (50)

However, the distance from the wally lies in the fixed interval1 < y < d/2, andū/u∗ can
be shown to be of the order of log Re, so that log(u∗/ū) ∼ log log Re, which is asymptotically
small at very large Re. Therefore 3 logη/2 log Re is asymptotically close to32, and the quantity

1− logη/ log Re

can be considered to be a small parameter, so that

exp

[
3

2

logη

log Re

]
≈ exp

[
3

2
− 3

2

(
1− logη

log Re

)]
= e3/2

[
1− 3

2

(
1− logη

log Re

)]
= e3/2

[
3

2

logη

log Re
− 1

2

]
. (51)

This means that in the interval of interest1 < y < d/2 the power law (34) can be approxim-
ated by

φ = e3/2

(√
3

2
+ 15

4 log Re

)
logη − e3/2

2
√

3
log Re− 5

4 e3/2, (52)

i.e., by the relation of the form (48) with

κ(Re) = e−3/2

√
3

2 + 15
4 logRe

, B = −e3/2 log Re

2
√

3
− 5

4 e3/2. (53)

It is important that, for Re→∞, the value ofκ(Re) tends to a finite nonzero limit 2/
√

3 e3/2 '
0·2776, whereas the additive constantB, which has no finite limit, tends to−∞.

At the same time, the family of power laws (34), having Re as the parameter, has an
envelope (cf. Chorin’s example presented in Section 3). The relation for the envelope is
obtained in implicit form by elimination of Re from Equation (34) and the equation

3 logη

2 log Re
=
√

3

10
logη

[(
1+ 20√

3 logη

)1/2

− 1

]
, (54)

which is obtained from (34) by its differentiation with respect to Re. And the envelope has an
important feature: in the working range of logη it is practically indistinguishable (see [29, 31])
from the straight line

φ = u

u∗
=
√

3e

2
logη + 5·1. (55)
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Figure 3. A schematic of the power-law curves in a pipe, their envelope and their asymptotic slope. The apparent
motion of the curves to the right is due to the changes in Reynolds number. (1) The velocity as a function of the
distance to the wall (in appropriate units), (2) the envelope of the power laws (formerly mistaken for the curves
themselves), (3) the asymptotic rectilinear part of the law of the wall curves.

Bearing in mind that 2/
√

3e = 0·425, the straight line (55) can be identified with the
traditional form of the universal logarithmic law (seee.g. [17], p. 273). Therefore, if one
plots the experimental points that correspond to various values of Re on a single graph in the
(logη, φ)-plane, what is natural for those who happen to believe the universal logarithmic
law, the envelope will be revealed. The visual impact of the envelope, when plotting the
experimental data in the(logη, φ)-plane, is magnified by the fact that the measurement at
very small values ofy, where the difference between the power laws and the envelope can
also be noticed, is missing due to the experimental difficulties. Thus, if our proposed scaling
law (34) is valid, the seeming confirmation of the universal logarithmic law is nothing but an
illusion. The characteristic feature of the Reynolds-number-dependent scaling law, in addition
to the splitting of the curves according to their Reynolds number, is the availability of straight-
line parts at very large Reynolds numbers and the discrepancy of about

√
e between the slopes

of the curves and the slope of the envelope (Figure 3). This qualitative distinction is confirmed
by the experiments of the Princeton group [26, 27] (see Figure 1). Indeed, despite a flaw in
these experiments discussed in detail in [31], the results of these experiments are sufficiently
robust to exhibit a separate curve for each Reynolds number and a well-defined angle between
the rectilinear parts of curves and their envelope.

6. Turbulent boundary layers

The universal law for the pipe flow (24) can be represented in dimensionless form

η∂ηφ = 1

κ
(56)

and the Reynolds-number-dependent scaling law in a corresponding form

η∂ηφ =
(√

3

2
+ 15

4 log Re

)
η3/2 logRe. (57)

The laws (25), (34) for the dimensionless velocityφ are obtained from (56) and (57) by
integration.
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Figure 4. (a) The experiments by Erm and Joubert [44]. Reθ = 2 788. Both self-similar intermediate regions (I)
and (II) are clearly seen. (b) The experiments of Krogstad and Antonia [45]. Reθ = 12 570. Both self-similar
intermediate regions (I) and (II) are clearly seen. (c) The experiments of Petrie, Fontaine, Sommer and Brugart
obtained by scanning the graphs in the review by Fernholz and Finley [46]. Reθ = 35 530. The first self-similar
region (I) is revealed; the second self-similar region is not revealed. (d) The experiments of Smith obtained by
scanning the graphs in the review by Fernholz and Finley [46]. Reθ = 12 990. The first self-similar intermediate
region (I) is clearly seen; the second region (II) can be revealed.

By the logic of its derivation, the scaling law (57) should be valid, not only for the flow in
pipes, but also for any wall-bounded shear flows.

Here, however, a basic question appears – what is the definition of the Reynolds number
for these flows which allows use of law (34) for them? This basic question is immaterial
as long as the engineer or researcher continues to believe in the universal logarithmic law.
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Indeed, if the law is Re-independent, the definition of Re does not matter.9 The situation is
different when the law is Re-dependent. Indeed the laws (34) and (57) have the property of
asymptotic covariance. This means that, if we replace Re based on, say, diameter by Re based
on a different length scale, so that Re= ZRe′, whereZ is a constant, the law (57), with
accuracy to terms of the second order, will take the form

η∂ηφ =
(√

3

2
+ 15

4 log Re
′

(
1− Z

log Re
′

))
η3/(2 logRe′),(1−(logZ/log Re′)). (58)

Asymptotically, at log Re→∞, when the second-order terms can be neglected, (57) and (56)
coincide, but practically, for large but not too large log Re the terms can be significant. In this
sense the choice of Re= ūd/ν for pipe flows was lucky because it allowed neglect of the
second-order terms, and use of the law of the wall, describing the velocity distribution in the
intermediate region in the form of (34), (57). But what to do for other shear flows?

We will consider below the zero-pressure-gradient boundary layers, and we will show that
the law (34) also describes these flows under appropriate choice of the Reynolds numbers.
Zero-pressure-gradient boundary layers have been well investigated experimentally over the
last 25 years. The common choice of Reynolds numbers for these flows is

Reθ = Uθ

ν
, (59)

whereU is the free-stream velocity, andθ the momentum displacement thickness. This choice
is rather arbitrary, and the law (34) with Re= Reθ should not be valid for not extremely large
Reθ . But what is the proper choice of Re for the boundary layers?

To understand this we first of all have to confirm that in the intermediate layer of the
boundary-layer flow adjacent to the viscous sublayer a certain scaling law is valid. To do that
(see details in [42, 43]) we replotted all (available to us) experimental data presented in the
traditional(logη, φ)-plane in a bilogarithmic plane(log10η, log10φ). The result was instruct-
ive: without exception for all investigated flows a straight line was obtained for region (I)
adjacent to the viscous sublayer (see examples in Figure 4, and all details in [43]). Moreover,
for the flows with low free-stream turbulence the second self-similar region (II) was obtained
between the first one and the free-stream flow. The analysis of this region is beyond the scope
of the present paper, but its degradation and subsequent disappearance with growing free-
stream turbulence is proved persuasively by experiments of Hancock and Bradshaw [47]. The
straight line (I) corresponds to a scaling law

φ = Aηα, (60)

and coefficientsA andα were obtained by statistical processing.
We assume that the effective Reynolds number Re has the form Re= U3/ν, where, we

repeat,U is the free-stream velocity and3 is a certain length scale. The basic question is
whether such a unique length scale3, which plays the same role for the intermediate region
(I) of the boundary layer as the diameter for the pipe flow, does exist? In other words, we
must ask whether it is possible to find such a length scale3, perhaps influenced by individual

9 If you ask a barman to serve water without syrup, the question ‘without which syrup’ is inappropriate. But
if the water is assumed to be with syrup, then the question ‘which syrup should be served’ is clear. The same
situation as here.
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Table 1.

Reθ α A log Re1 log Re2 log Re Reθ /Re

Erm and Joubert [44]

697 0·163 7·83 9·23 9·20 9·22 0·07

1 003 0·159 7·96 9·46 9·43 9·45 0·08

1 568 0·156 7·99 9·51 9·62 9·56 0·11

2 226 0·148 8·28 10·01 10·14 10·07 0·09

2 788 0·140 8·66 10·67 10·71 10·69 0·06

Krogstad and Antonia [45]

12 570 0·146 8·38 10·18 10·27 10·23 0·45

Petrie, Fontaine, Sommer and Brungart10

35 530 0·119 9·76 12·57 12·61 12·59 0·12

Smith11

4 996 0·146 8·36 10·15 10·27 10·21 0·18

12 990 0·130 9·08 11·40 11·54 11·47 0·14

features of the flow, such that the scaling law (34) is valid for the first intermediate region
(I). To answer this question we have taken the valuesA andα, obtained, we emphasize, by
statistical processing of the experimental data in the first intermediate scaling region, and then
calculated two values log Re1, log Re2, by solving the equations suggested by scaling law (34)

1√
3

log Re1+ 5
2 = A,

3

2 log Re2
= α. (61)

If these values log Re1, log Re2 obtained by solving different Equations (61) are indeed close,
i.e., if they coincide with experimental accuracy, it means that the unique length scale3 can
be determined and the experimental scaling law in region (I) coincides with the basic scaling
law (34).

Table 1 (above) shows in several examples that the values of log Re1 and log Re2 are close
(more detailed discussion of processed data can be found in [43], but the conclusion remains
the same). So, we can introduce for all these flows the mean Reynolds number

Re= √Re1 Re2 log Re= 1
2(log Re1+ log Re2) (62)

and consider Re as an estimate for the effective Reynolds number of the boundary-layer flow.
Naturally the ratio Reθ/Re= θ/3 is different for different flows.

Checking the universal form of the scaling law (34)

ψ = 1

α
log

(
2αφ√
3+ 5α

)
= logη (63)

we have another way of demonstrating clearly the applicability of scaling law (34) to the first
intermediate region of the flow adjacent to the viscous sublayer. According to relation (63),

10,11 The data obtained by scanning the graphs in the review [46].
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Figure 5. The experiments by Erm and Joubert [44](∗). Krogstad and Antonia [45](C); Smith(�); and Petrie
et al. (F) collapse on the bisectrix of the first quadrant in accordance with the universal form (63) of the scaling
law (34).

in the coordinates(logη,ψ), all experimental points should collapse onto the bisectrix of
the first quadrant. In Figure 5 are represented the data of Erm and Joubert, [44], Krogstad
and Antonia [45], Smith (data obtained by scanning the graphs in review [46]) and Petrie
et al. (data obtained by scanning the graphs in review [46]). It is seen that the data collapse
onto the bisectrix with sufficient accuracy to confirm the scaling law (34). The parameterα

was calculated according to the formulaα = (3
2 log Re), where here log Re was taken to be

(log Re1+ log Re2)/2 (see Table 1).
We conclude that scaling law (34) gives an accurate description of the mean velocity

distribution over the self-similar intermediate region adjacent to the viscous sublayer for a
wide variety of zero-pressure-gradient boundary-layer flows. The Reynolds number is defined
as Re= U3/ν, whereU is the free-stream velocity and3 is a length scale which is well
defined for all the flows under investigation.

The validity of the scaling law for boundary-layer flows constitutes a strong argument in
favor of its validity for a wide class of wall-bounded turbulent shear flows at large Reynolds
numbers.

7. Conclusion

Mathematics is still unable to obtain laws describing shear-flow turbulence from first prin-
ciples. Properly directed experiments and analysis of experimental data remain crucially im-
portant methods for the mathematical modeling of turbulent flows. Combining theoretical
fluid dynamics and the analysis of experimental data we have come to the conclusion that,
contrary to basic hypothesis of von Kármán, Prandtl and their followers, the influence of
viscosity never disappears, even at very large Reynolds-numbers. Thus, the general principle
of Reynolds-number similarity, widely used in the literature, is not quite correct, and should be
abandoned, as well as the universal logarithmic law. Our studies suggest instead the Reynolds-
number-dependent scaling law discussed above. This law is based on incomplete similarity,



Scaling laws for turbulent wall-bounded shear flows383

so that viscosity enters the basic laws, but only in power combination with other parameters
of turbulent motion.

We feel that the affirmation of the effectiveness of incomplete similarity and of vanishing-
viscosity asymptotics for turbulent shear flows at large Reynolds numbers has broad implic-
ations for other manifestations of turbulence,e.g. in jets, wakes, mixing layers, and local
structure, and should lead to a reconsideration of the basic tools used in the study of turbulent
flows.

Sir James Lighthill knew this work in its evolution, practically from the very beginning.
The last time the present author and A. J. Chorin delivered lectures concerning this problem
in the presence of Sir James was in Rome in early July 1997. We clearly understood that our
basic conclusion concerning the replacement of the universal logarithmic law by the Reynolds-
number-dependent scaling law was expected by him and indeed, as he said, he came to agree
with this conclusion after our first steps and when many things remained unclear for us. The
attention and support of this giant was and will be a great stimulus in our work.
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